授课专家:
[张世民]
授课天数:
2 天
收费标准:
价格面议
开办周期:
按需开办,有需要的企业请致电本站客服
受训对象:
企业负责人、营销部门主管、业务精英
课程目标:
● 了解大数据产生的时代背景,正确认知大数据的应用价值;
● 透视大数据的基本规律和特性,掌握大数据思维,提高工作效率;
● 结合自身行业特性,开展数据分析,发现数据背后的问题和机会;
● 基于大数据应用,进行点对点精准营销,为客户提供个性化服务;
● 拓展数据获取渠道,整合相关行业优质客户资源,提升业绩水平。
课程大纲:
引言:互联网+时代企业生存之道——保持饥饿感
第一讲:数字化背景下的商业形态变革
一、传统行业数据营销面临的难点
1. 数据思维:数据意识较弱,人才储备不足
2. 数据采集:数据积累时间长,但质量不佳
3. 数据开发:应用场景不够,缺乏业务突破点
4. 数据应用:不会造势,缺少应用的成功案例
5. 数据共享:数据不统一,难以发挥整体性作用
案例解析:跨界时代的冲击——竞争对手到底是谁?
二、互联网巨头们的大数据基因
1. 跨界打劫——挟用户数据重构市场空间
2. 降维打击——瓦解竞争对手的惯性生存条件
3.“跨界打劫”的本质:场景转换与用户体验
案例解析:BAT们的边界到底在哪里?
三、大数据开发及应用方向
1. 产品研发:数据反馈与产品定位
2. 用户画像:消费者心理及行为分析
案例解析:瞄准社区生鲜,钱大妈凭什么火爆?
3. 精准营销:痛点捕捉与个性化需求触达
案例解析:从产品定义到精准营销,看众安保险如何玩转大数据
4. 风险管控:数据监测与风险预警
案例解析:上海外滩陈毅广场踩踏事件的反思和启示
5. 运营效率:智能化和精细化管理
创新服务:消费者个性化需求满足
案例解析:门店数量持续暴增,美发品牌“优剪”的大数据思维和颠覆式创
第二讲:大数据开发流程及数据分析应用策略
一、大数据分析挖掘的重要性
1. 数据是沉睡的金矿
2. 发现运营中存在的不足
3. 把握市场变化和竞对动态
4. 客户需求与极致体验
5. 个性化营销方案制定
6. 业务形态重塑和流程优化
7. 洞察行业性周期走势
8. 为决策提供有效依据
二、大数据分析挖掘方法和要点
1. 统计性分析
1)常规统计——转化率、留存率、活跃度
2)不同维度的统计分析
3)导向性的数据提取
案例解析:飞机真的是最安全的交通工具?
实战分享:从某外卖平台的统计数据中,你能看出什么?
2. 预测性分析
1)捕捉各个因素之间的内在关联
2)通过历史数据发掘规律和趋势
3)风险评估,预判和管控
案例解析:为什么电力数据真实反映了国民经济运行状况?
实战分享:一起市场人员集体违规行为引发的KPI重构
3. 可视化分析
1)形成观点和结论
2)文不如表,表不如图
3)呈现方式——Excel、PPT或其他分析工具
案例解析:城市大脑——智能交通最重要的支点
4. 分析思维训练
1)对比、转化、关联,横向与纵向扩展
2)深入了解各业务板块,使分析工作贴合实际
3)比数据分析更重要的是大数据思维和意识
思维训练:为什么大部分人对中国房价走势分析判断失误?
实战分享:如何通过数据分析识别已损坏的共享雨伞?
三、数据开发流程
1. 数据接入
2. 数据整合
3. 数据处理
4. 数据分析
5. 用户画像
6. 精准营销
实战分享:共享雨伞“JJ伞”数据管理平台搭建
四、大数据内部采集与外部整合
1. 内部数据采集要点
1)完整性——数据累积效应
2)连续性——周期内变化趋势
3)多维度——数据的多样性
4)倾向性——目标导向的数据提取
2. 外部数据渠道开拓与整合优化
1)“互联网+”的跨界趋势
2)构建跨平台信息采集体系
实战分享:WiFi运营商“百米生活”与公安网监的大数据合作
第三讲:基于用户画像的大数据精准营销与创新服务
一、什么是用户画像
1. 用户DNA
2. 决策依据
3. 效果转化
案例解析:今日头条为什么让巨头们恐慌?
二、用户画像构建
1. 用户需求洞察
1)用户角色属性划分
2)用户真伪需求甄别
3)保持倾听,独立判断
案例解析:中国邮政VS顺丰速运,用户的槽点在哪里?
2. 用户画像的核心是标签
3. 数据源的建立
1)用户数据
2)行为数据
3)消费数据
4)商品数据
5)客服数据
4. 数据建模及规则
1)购买力模型
2)群体画像模型
3)购买兴趣模型
4)促销敏感度模型
案例解析:拼多多市值相当于4个联想集团,哪些用户群体贡献最大?
案例解析:抖音和快手所呈现出的用户画像,反映了真实的中国青年?
三、用户标签体系
1. 用户的基础信息
2. 用户的社会属性
3. 用户的消费倾向
4. 用户的行为习惯
5. 用户的购物偏好
6. 用户的心理特征
7. 用户的异常情况
8. 用户的使用特权
实战分享:用户画像偏差——某厨具生产厂家线上推广遭遇的困惑
实战分享:用户群体重构——某家电生产厂家的互联网转型策略
实战分享:刚需VS伪需求——共享雨伞的用户画像构建
四、精准营销与创新服务
1. 智能搜索
2. 社交传播
3. 智能选品
4. 会员营销
5. DSP广告
6. 个性化推荐
案例解析:从做什么到为谁做,基于大数据的C2B个性化定制
第四讲:大数据的正确认知及发展趋势
一、大数据的时代背景和基础条件
1. 阿里巴巴新战略:数字经济体
2. 大数据三要素
1)大——海量,平台级
2)数——信息,结构化
3)据——精准、可依赖
3. 大数据的六个特征
案例解析:五常大米,下单即送
大数据的类型
1)消费数据——多维度记录
2)机器和传感数据——图文、语音、影像
3)行为数据——位置、轨迹、交易
a大数据与移动互联网
b大数据与物联网
c大数据与云计算
d大数据与人工智能
e大数据在各行业的应用
二、大数据的开发价值及发展趋势
1. 新能源——数据也是生产力
1)个性化服务——感知用户,精准触达
2)标准化输出——边际成本和规模效应
3)大数据发展现状及未来趋势
4)人格化——个体都是载体
5)扩展性——用之不竭和高兼容性
6)智能化——数据会说话
视频分享:马云谈大数据
案例解析:阿里“双十一”背后强悍的数据处理能力
老师介绍:张世民
授课风格:
● 以自身实战经历为依托,直奔主题,切中要害,真刀实枪,拒绝假大空。
● 对所授课程吹毛求疵,与时俱进,喜好创新,发现新趋势,解决新问题。
● 大气大方,不失激情,寓教于乐,深刻掌握受众特性,兼顾深度与趣味。
服务过的客户:
1.政府/国企/高校:
江苏省经信委、黑龙江省工信委、工业和信息化部电子第五研究所、甘肃省张掖市委组织部、深圳市前海地税局、深圳市保税区地方税务局、上海交通银行总部、中国联通广东省公司、国家电网聊城电力公司、广东网通、南开大学深圳研究院、清华大学黑龙江教学中心、中山大学、华南农业大学、暨南大学、兰州大学管理科学研究院、广州航海学院、江门五邑大学
2.其他行业:
深圳软件行业协会、万兴软件、深圳文思创新、理才网、走秀网、佳兆业地产、中原地产、美联物业、康之源药业、万润药业、陕西广仁医院、韩城友谊医院、蓝田中医院、神木电力医院、渔人码头、光汇石油集团、易能电气、美域科技、科密电子、金利来(中国)运营中心、龙粤通信、光明乳业、百丽集团、艾力斯特健康科技、天能集团、名家生活空间建材